Beyond Mechanism Design

David H. Wolpert! and Kagan Tumer!

NASA Ames Research Center, Moffett Field, CA, 94035, USA

Abstract. The field of mechanism design is concerned with setting (incentives
superimposed on) the utility functions of a group of players so as to induce desirable
joint behavior of those players. It arose in the context of traditional equilibrium
game theory applied to games involving human players. This has led it to have many
implicit restrictions, which strongly limits its scope. In particular, it ignores many
issues that are crucial for systems that are large (and therefore far off-equilibrium in
general) and/or composed of non-human players (e.g., computer-based agents). This
also means it has concentrated on issues that are often irrelevant in those broader
domains (e.g., incentive compatibility). This paper illustrates these shortcomings
by reviewing some of the recent theoretical work on the design of collectives, a
body of work that constitutes a substantial broadening of mechanism design. It
then presents computer experiments based on a recently suggested nanotechnology
testbed that demonstrates the power of that extended version of mechanism design.

1 MOTIVATION AND BACKGROUND

1.1 Collectives

This paper concerns collectives, which are defined as any system having
the following two characteristics: First, the system must contain one or more
agents each of which we view as trying to maximize an associated private
utility. Second, the system must have an associated world utility function
that rates the possible behaviors of that overall system [29,37-40].

While games are obviously collectives, the reverse need not be so, in the
sense that what game underlies a particular collective may not be known.
In practice collectives are often very large, distributed, and support little if
any centralized communication and control, although those characteristics
are not part of their formal definition. Collectives can be found in nature, as
both organic and inorganic systems. They can also be artificial, e.g., compu-
tational.

We do not insist that the agents in a collective really are “trying” to
maximize their private utilities, in some teleological sense. We only require
only that they can be viewed that way. This allows us to circumvent the
fraught exercise of formulating a definition of what an arbitrary component
of some physical system is “trying to do”. This is illustrated with a naturally
occurring example of a collective involving gene expression in Eukaryotic
cells [17]. Gene expression — the process of “reading” a gene into an asso-
ciated protein according to the genetic code — requires numerous distinct

2 Wolpert & Tumer

cellular machines. Each machine carries out a separate step in the expres-
sion pathway, with extensive coupling among the steps in the pathway. It
is thought that the coupling optimizes the fidelity of the entire expression
pathway. This allows us to view that expression pathway as a collective with
large values of both the world utility and the private utilities. We do this
by identifying the world utility with expression fidelity, the individual agents
with the separate cellular machines, and the private utilities of those agents
with quality of their performance at the associated roles they play in the
entire pathway.

With the advent of ubiquitous cheap computing in the near future, the
number of artificial control systems that are collectives should explode. Two
obvious examples here are a user’s constellation of multiple wearable com-
puters, and “computational clouds” of computationally enabled household
devices. If such distributed systems are not to be extremely brittle, then ab-
sent centralized communication and control, the individual components of
the system will need to be both autonomous and adaptive. Almost by defini-
tion, this means that those components will be using statistical and machine
learning techniques of some sort to modify their behavior to try to meet a
goal, i.e., to maximize their private utility.! Moreover, in both of these exam-
ples, there is an obvious choice of world utility: the satisfaction level of the
user(s) of the system.

As a final example, which will serve as the basis for our experiments
reported below, consider search algorithms that try to find the value of a high-
dimensional variable z for which a pre-specified function f has a large value.
Examples of such algorithms are gradient ascent, simulated annealing, genetic
algorithms, etc. Say we take the final value of f achieved by such an algorithm
to be the “world utility” of the entire system’s dynamic history. Assuming
each individual component of z evolves with the “goal” of maximizing that
final value of f(z), we can view each such component as an agent, with private
utility given by the final value of f. (Note that the private utility of an agent
depends on variables not directly under the agent’s control, in general.)

In this way any search algorithm can be viewed as a collective. However
conventionally such algorithms use very “dumb” agents (e.g., semi-random
agents rather than RL-based agents). They also don’t consider possible mod-
ifications to the underlying system, e.g., to the choice of private utilities, that
might result in a better value of final value of f. (The design problem of how
best to set private utilities is discussed in the next section.) Constructing
search algorithms that use techniques of this nature — intuitively, “agen-
tizing” the individual variables of a search problem by providing them with
adaptive intelligence — would provide a search algorithm that is immedi-
ately parallelizable. Owing to their use of “smart” variables, such algorithms

! When used for this purpose, such techniques are either explicitly or implicitly
related to the field Reinforcement Learning (RL) [2,8,11,15,16,22,25,26,30].

Beyond Mechanism Design 3

might also lead to substantially better final values of f than conventional
search algorithms.

1.2 The Design of Collectives and Mechanism Design

The “inverse problem” in the science of collectives is how one should initial-
ize/update the precise configuration of the system — including in particular
the private utilities of the individual agents — so that the ensuing behavior of
the entire collective achieves large values of the provided world utility. Since
in truly large systems detailed modeling of the system is usually impossible,
it is crucial to try to solve this problem in a way that avoids such modeling.
We need to solve it leveraging only the simple assumption that our agents’
learning algorithms are individually fairly good at what they do.

This design problem is related to work in many other fields, including
multi-agent systems (MAS’s), computational economics, mechanism design,
reinforcement learning, statistical mechanics, computational ecologies, (par-
tially observable) Markov decision processes and game theory. However none
of these fields is both applicable in large problems, and directly addresses
the general inverse problem, rather than a special instance of it. (See [37]
for a detailed discussion of the relationship between these fields, involving
hundreds of references.)

For example, the subfield of game-theory known as mechanism design
might, at first glance, appear to provide us techniques for solving the inverse
problem. However mechanism design is almost exclusively concerned with
collectives that are at (a suitable refinement of) Nash equilibrium [10,20,21].
That means that every agent is assumed to be performing as well as is the-
oretically possible, given the behavior of the rest of the system. In setting
private utilities and the like on this basis, mechanism design ignores com-
pletely the issue of how to design the system so that each of the agents can
achieve a good value of its private utility (given the behavior of the rest of
the system). In particular it ignores all statistical issues related to how well
the agents can be expected to perform for various candidate private utilities.
Such issues become crucial as one moves to large systems, where each agent
is implicitly confronted with a very high-dimensional RL task.

There are many other issues that arise in bounded rational situations
that are not considered by mechanism design since they do not arise when
there is full rationality. For example, it is often the case that if we “stabi-
lize” the sequence of actions of some agent p, the other agents, being in a
more predictable environment, are able to perform better. Conversely, such
enforced stabilization of its actions will often hurt the performance of agent
p- Mechanism design almost completely ignores the associated issues of how
best to trade off the performance of one agent against that of other agents,
or more generally of how best to trade off the degree of rationality of one
agent against that of another agent. (Indeed, mechanism design does not

4 Wolpert & Tumer

even possess a model-independent measure of “degree of rationality” that is
both broadly applicable and appropriate for real-world domains.)

In addition to these problems, many of the techniques derived in mecha-
nism design are inappropriate in numerous application domains, since those
techniques are largely tailored to collectives of human beings. In particular,
many of those techniques are tailored to the idiosyncracy of such collectives
that their members have hidden variables whose values they “do not want to
reveal”. This idiosyncracy is often irrelevant in artificial systems where we
get to design the agents in toto. Similarly, the need to view the private utility
functions as fixed in stone, and therefore establish an elaborate mathematical
structure involving “incentives” to allow us to affect the preference orderings
of the agents, is usually unnecessary when we are designing the private utility
functions of the agents from the ground up.

Conversely, its concentrating on humans has resulted in mechanism de-
sign’s imposing strong restrictions on the allowed form of the private utilities
and the world utility and communication structures among the agents, re-
strictions that may not hold in non-human systems. Indeed, if there were no
such restrictions, then given the Nash equilibrium presumption of mechanism
design, how best to set the private utilities would be a trivial problem: To
have the maximum of world utility be a Nash equilibrium, simply set each
such private utility to equal the world utility, in a so-called “team game” or
“exact potential game” [9]. To have the analysis be non-trivial, restrictions
like those that apply to the private utilities of human beings are needed.

Not only are the techniques of mechanism design not relevant in many
domains, because those domains do not have the form assumed in mecha-
nism design, but in addition there are many issues that loom large in such
domains about which mechanism design is mute. For example, in computa-
tional domains, where the agents are computer programs each controlling a
set of certain variables, we often have some freedom to change how the set
of all variables being controlled is partitioned among the agents, and even
change the number of such agents. Needless to say, with its focus on human
agents, mechanism design has little advice to provide on such issues of how
best to define the agents in the first place.

Perhaps the most striking illustration of the shortcoming of mechanism
design is the fact that it does not allow for run-time adaptive redesign. For
real-world bounded rational agents, the initial design of the system necessarily
makes assumptions which invariably are at least partially at variance with
reality. To address this, one must employ adaptive techniques (e.g., statistical
estimation) on the running system to refine one’s initial assumptions, and
then modify the design accordingly. Yet almost all of mechanism design has
no room for addressing such “macro-learning”.

There is other previous work that does consider the inverse problem in
its broadest sense, and even has each agent explicitly use RL techniques, so
that no formal assumption is made in the associated theory that the system

Beyond Mechanism Design 5

is at Nash equilibrium. Despite this use of RL though, in general in that
work the private utilities are set as in a team game. So again, there is no
concern for how well the agents can discern how best to act to maximize
their utilities. Unfortunately, as intimated above (and expounded below),
ignoring this issue means that the approach scales extremely poorly to large
problems. Intuitively, the difficulty is that each agent will have a hard time
discerning the echo of its behavior on its private utility when the system
is large if that private utility is the world utility; each agent has a horrible
“signal-to-noise” problem in such a situation.?

Intuitively, in designing the private utilities of a collective we want them
to be “aligned” with the world utility, in that modifications an agent might
make that would increase its private utility also must increase world utility.
Fortunately the equivalence class of such private utilities extends well be-
yond team-game utilities. In particular, it extends to include utilities that
have far better “signal-to-noise” properties. By using those utilities one can
get far better values of world utility than would otherwise be possible. The
mathematical theory for how to generate such alternative private utilities is
presented in the next section. The following section of this chapter then sum-
marizes many experiments that demonstrate that by using those alternative
private utilities one can improve performance by up to orders of magnitude,
and that the gain in performance grows as the system gets larger.

2 The Mathematics of Designing Collectives

In this chapter attention is restricted to collectives in which the individual
agents are pre-fixed, being the players in multi-stage non-cooperative games,
with their moves at any single stage in no a priori way restricted by their
moves at other times or by the moves of the other players. Some techniques
for the design of the private utilities in such games are known as the “COllec-
tive INtelligence (COIN)” framework.[38] This section presents some of the
mathematics necessary to understand that framework. It should be empha-
sized however that the full mathematics of how to design collectives extends
significantly beyond what is needed to address such games.?

The restricted version of that full mathematics needed to present the
COIN framework starts with an arbitrary vector space Z whose elements (

2 To help see this, consider the example of a collective provided by the human
economy. A team game in that example would mean that every human gets US
GDP as its reward signal, and tries to discern how best to act to maximize that
reward signal. At the risk of understatement, this would provide the individual
members of the economy with a difficult reinforcement learning task.

That framework encompasses, for example, arbitrary dynamic redefinitions of the
“players” (i.e., dynamic reassignments of how the various subsets of the variables
comprising the collective across all space and time are assigned to players), as well
as modification of the players’ information sets (i.e., modification of inter-player
communication). See [33].

6 Wolpert & Tumer

give the joint move of all players in the collective in some stage. We wish to
search for the ¢ that maximizes the provided world utility G(¢). In addition
to G we are concerned with private utility functions {g,}, one such function
for each variable/player 7. We use the notation % to refer to all players other
than 7.

We will need to have a way to “standardize” utility functions so that the
numeric value they assign to a only reflects their ranking of { relative to
certain other elements of Z. We call such a standardization of some arbitrary
utility U for player n the “intelligence for 5 at ¢ with respect to U”. Here
we will use intelligences that are equivalent to percentiles:

enur(0) = / dc., (CYOU(Q) = U], (1)

where the Heaviside function @ is defined to equal 1 when its argument is
greater than or equal to 0, and to equal 0 otherwise, and where the subscript
on the (normalized) measure dy indicates it is restricted to ¢’ sharing the
same non-7 components as (.* Intelligence value are always between 0 and 1.

Our uncertainty concerning the behavior of the system is reflected in a
probability distribution over Z. Our ability to control the system consists
of setting the value of some characteristic of the collective, e.g., setting the
private utility functions of the players. Indicating that value of the global co-
ordinate by s, our analysis revolves around the following central equation
for P(G | s), which follows from Bayes’ theorem:

P(G|s) = /degP(G | eG,s)/degP(EG | €g,5)P(€g |), (2)

where €, = (€y,,g,,, (C); €na.g,, (¢), - -) is the vector of the intelligences of the
players with respect to their associated private utility functions, and e€g =
(en1,c(C)s €ma,c(€), - --) is the vector of the intelligences of the players with
respect to G.

Note that €, ,, ({) = 1 means that player 7 is fully rational at ¢, in that
its move maximizes the value of its utility, given the moves of the players. In
other words, a point { where €, . (¢) =1 for all players 7 is one that meets
the definition of a game-theory Nash equilibrium.? On the other hand, a ¢ at
which all components of €5 = 1 is a local maximum of G (or more precisely,

4 The measure must reflect the type of system at hand, e.g., whether Z is countable
or not, and if not, what coordinate system is being used. Other than that, any
convenient choice of measure may be used and the theorems will still hold.

5 See [10]. Note that consideration of points ¢ at which not all intelligences equal 1
provides the basis for a model-independent formalization of bounded rationality
game theory. This formalization contains variants of many of the theorems of
conventional full-rationality game theory. See [32].

Beyond Mechanism Design 7

a critical point of the G(() surface). So if we can get these two vectors to
be identical, then if the agents do well enough at maximizing their private
utilities we are assured we will be near a local maximum of G.

uo) A £,((:n) =06

Fig. 1. Intelligence of agent n at state ¢ for utility U is the actual joint move at
hand. The x-axis shows agent n’s alternative possible moves (all states ¢’ having {’s
values for the moves of all players other than 7.). The thick sections of the x-axis
show the alternative moves that 1 could have made that would have given 7 a worse
value of the utility U. The fraction of the full set of n’s possible moves that lies in
those thick sections (which is 0.6 in this example) is the intelligence of agent 7 at
¢ for utility U, denoted by €,,v(¢).

To formalize this, consider our decomposition of P(G | s). If we can choose
s so that the third conditional probability in the integrand is peaked around
vectors €, all of whose components are close to 1, then we have likely induced
large (private utility function) intelligences. If we can also have the second
term be peaked about €g equal to €4, then e will also be large. Finally, if
the first term in the integrand is peaked about high G when € is large, then
our choice of s will likely result in high G, as desired.

Intuitively, the requirement that private utility functions have high “signal-
to-noise” arises in the third term. It is in the second term that the requirement
that the private utility functions be “aligned with G” arises. In this chapter
we concentrate on these two terms, and show how to simultaneously set them
to have the desired form. 6

6 Search algorithms that do not involve game theory (e.g., simulated annealing)
can be viewed as addressing how to have term 1 have the desired form. They
do this by trying to ensure that the particular local maximum they find of the
function they are searching has a high value of that function. This is the essence
of why such algorithms “trade off exploration and exploitation”. One can com-
bine such term-1-based techniques with the techniques presented in this paper
that concentrate on terms 2 and 3. Intuitively, this amounts to “wrapping” a

8 Wolpert & Tumer

Details of the stochastic environment in which the collective operates,
together with details of the learning algorithms of the players, are all bun-
dled into the distribution P(¢) which underlies the distributions appearing
in Equation 2. Note though that independent of these comsiderations, our
desired form for the second term in Equation 2 is assured if we have cho-
sen private utilities such that €, equals eg exactly for all . Such a system
is said to be factored. In game-theory parlance, the Nash equilibria of a
factored collective are local maxima of G. In addition to this desirable equi-
librium behavior, factored collectives also automatically provide appropriate
off-equilibrium incentives to the players (an issue rarely considered in the
game theory / mechanism design literature).

As a trivial example, any “team game” in which all the private utility
functions equal G is factored [9,18]. However team games often have very
poor forms for term 3 in Equation 2, forms which get progressively worse
as the size of the collective grows. This is because for such private utility
functions each player n will usually confront a very poor “signal-to-noise”
ratio in trying to discern how its actions affect its utility g, = G, since so
many other player’s actions also affect G and therefore dilute 7’s effect on its
own private utility function.

We now focus on algorithms based on private utility functions {g,} that
optimize the signal/noise ratio reflected in the third term, subject to the
requirement that the system be factored. To understand how these algorithms
work, say we are given an arbitrary function f((,) over player 9’s moves, two
such moves C,,l and Cn2, a utility U, a value s of the global coordinate, and a
move by all players other than 7, (3. Define the associated learnability by

[E(US Cn) Cnl) - E(U; Cny Cn2)]2
f dGylf (Cn)Var(U; ¢, Gy)l '

The expectation values in the numerator are formed by averaging over the
training set of the learning algorithm used by agent 7, n,,. Those two averages
are evaluated according to the two distributions P(Ul|n,)P(ny|C+,¢yt) and
P(Ulny)P(ny|Cs Cy2), respectively. (That is the meaning of the semicolon
notation.) Similarly the variance being averaged in the denominator is over
ny according to the distribution P(U|ny)P(ny,|¢x, ().

The denominator in Equation 3 reflects how sensitive U(() is to chang-
ing (+. In contrast, the numerator reflects how sensitive U(() is to changing
Cy- So the greater the learnability of a private utility function g,, the more
95(¢) depends only on the move of player 7, i.e., the better the associated

Af(U;C‘n;SaCnla€n2) = \/ (3)

system using the private utilities derived below in an outer loop that trades off
exploration and exploitation. The resultant hybrid “Computational Corporation”
(CoCo), algorithm, addressing all three terms, outperforms simulated annealing
by over two orders of magnitude[34]. Due to its adding in concern for term 1,
CoCo also typically outperforms the techniques presented in this paper; it is only
for reasons of space that we do not explore it here.

Beyond Mechanism Design 9

signal-to-noise ratio for 7. Intuitively then, so long as it does not come at
the expense of decreasing the signal, increasing the signal-to-noise ratio spec-
ified in the learnability will make it easier for n to achieve a large value
of its intelligence. This can be established formally: if appropriately scaled,
g;7 will result in better expected intelligence for agent 7 than will g, when-
ever Af(g;;CAn,s,Cnl,Cf) > Ap(gn; Gy 8,Cyty G°) for all pairs of moves
G\ G733 7

It is possible to solve for the set of all private utilities that are factored
with respect to a particular world utility. Unfortunately, in general it is not
possible for a collective both to be factored and to have infinite learnability
for all of its players. However consider difference utilities, which are of the
form

U(Q) = BIG(O) — I'(Cy)] (4)

Any difference utility is factored [33]. In addition, under usually benign ap-
proximations, A;(U; (v, s,C,",¢y°) is maximized over the of difference utili-
ties for all pairs C,,l, ¢y~ by choosing

I'(Cn) = E(f(G)G(Q) | ¢y 8) (5)

up to an overall additive constant, where the expectation value is over (.
We call the resultant difference utility the Aristocrat utility (AU), loosely
reflecting the fact that it measures the difference between a player’s actual
action and the average action. If each player 7 uses an appropriately rescaled
version of the associated AU as its private utility function, then we have
ensured good form for both terms 2 and 3 in Equation 2.

Using AU in practice is sometimes difficult, due to the need to evalu-
ate the expectation value. Fortunately there are other utility functions that,
while being easier to evaluate than AU, still are both factored and possess
superior learnability to the team game utility, g, = G. One such private util-
ity function is the Wonderful Life Utility (WLU). The WLU for player
7 is parameterized by a pre-fixed clamping parameter CL, chosen from
among 7)’s possible moves:

W LU, = G(C) — G(Cyy, CLy) - 6)

WLU is factored no matter what the choice of clamping parameter. Further-
more, while not matching the high learnability of AU, W LU usually has far
better learnability than does a team game, and therefore (when appropriately
scaled) results in better expected intelligence [29,39,37,41].

" In many RL algorithms, changing the scale of the utility is exactly equivalent to
changing a “temperature” parameter of the algorithm. Such temperatures have
to usually be set via a search process. The result presented here establishes that
so long as g; has higher learnability than does g, the expected intelligence of
gn at the associated optimal temperature will be higher than that of g, at its
optimal temperature.

10 Wolpert & Tumer

¢ (C“nz) 0) (CAnza a)
m [100 — 100 — 1 00
2 |001 Clamp s 000 Clamp 15 .33 .33 .33
s | 100 to “null” 100 to “average” 100
m 010 010 0 0

Fig. 2. This example shows the impact of the clamping operation on the joint
state of a four-player system where each player has three possible moves, each such
move represented by a three-dimensional unary vector. The first matrix represents
the joint state of the system ¢ where player 1 has selected action 1, player 2 has
selected action 3, player 3 has selected action 1 and player 4 has selected move 2.
The second matrix displays the effect of clamping player 2’s action to the “null”
vector (i.e., replacing (, with 0). The third matrix shows the effect of instead
clamping player 2’s move to the “average” action vector a = {.33,.33, .33}, which
amounts to replacing that player’s move with the “illegal” move of fractionally
taking each possible move ({,, = a).

Figure 2 provides an example of clamping. As in that example, in many
circumstances there is a particular choice of clamping parameter for player
7 that is a “null” move for that player, equivalent to removing that player
from the system. (Hence the name of this private utility function — cf. the
Frank Capra movie.) For such a clamping parameter assigning the associated
W LU to n as its private utility function is closely related to the economics
technique of “endogenizing a player’s externalities”, for example with the
Groves mechanism [19,20,10].

However it is usually the case that using W LU with a clamping parameter
that is as close as possible to the expected move defining AU results in far
higher learnability than does clamping to the null move. Such a WLU is
roughly akin to a mean-field approximation to AU.2 For example, in Fig. 2,
if the probabilities of player 2 making each of its possible moves was 1/3,
then one would expect that a clamping parameter of a would be close to
optimal. Accordingly, in practice use of such an alternative W LU derived
as a “mean-field approximation” to AU almost always results in far better
values of G than does the “endogenizing” W LU.

Intuitively, collectives having factored and highly learnable private utili-
ties like AU can be viewed as akin to well-run human companies. G is the
“bottom line” of the company, the players n are identified with the employees
of that company, and the associated g, given by the employees’ performance-
based compensation packages. For example, for a “factored company”, each

8 Formally, our approximation is exact only if the expected value of G equals G
evaluated at the expected joint move (both expectations being conditioned on
given moves by all players other than 7). In general though, for relatively smooth
G, we would expect such a mean-field approximation to AU, to give good results,
even if the approximation does not hold exactly.

Beyond Mechanism Design 11

employee’s compensation package contains incentives designed such that the
better the bottom line of the corporation, the greater the employee’s com-
pensation. As an example, the CEO of a company wishing to have the private
utilities of the employees be factored with G may give stock options to the
employees. The net effect of this action is to ensure that what is good for the
employee is also good for the company. In addition, if the compensation pack-
ages are “highly learnable”, the employees will have a relatively easy time
discerning the relationship between their behavior and their compensation.
In such a case the employees will both have the incentive to help the company
and be able to determine how best to do so. Note that in practice, providing
stock options is usually more effective in small companies than in large ones.
This makes perfect sense in terms of the formalism summarized above, since
such options generally have higher learnability in small companies than they
do in large companies, in which each employee has a hard time seeing how
his/her moves affect the company’s stock price.

3 Tests of the Mathematics

3.1 Previous experiments

As a test of the preceding mathematics, in some of our previous work we
used the W LU for distributed control of network packet routing [39], achiev-
ing substantially better throughput than by using the best possible shortest-
path-based system [39], even though that SPA-based system has information
denied the agents in the W LU-based collective. In related work we have
shown that use of the W LU automatically avoids the infamous Braess’ para-
dox, in which adding new links can actually decrease throughput — a situa-
tion that readily ensnares SPA’s [29,36]. In yet other work we have applied
the WLU to the problem of controlling communication across a constella-
tion of satellites so as minimize the importance-weighted loss of scientific
data flowing across that constellation [35]. We have also successfully applied
COIN techniques to the problem of coordinativing a set of autonomous rovers
so as to maximize the importance-weighted value of a set of locations they
visit [28].

In addition we have explored COIN-based techniques on variants of con-
gestion games [38,40,41], in particular of a more challenging variant of
Arthur’s El Farol bar attendance problem [1], sometimes also known as the
“minority game” [7]. In this work we showed that use of the WLU can result
in performance orders of magnitude superior to that of team game utilities.

3.2 The faulty devices choice problem

In addition to the examples of the previous subsection, we have successfully
applied the COIN techniques to problems that are explicitly cast as search.

12 Wolpert & Tumer

These include setting the states of the spins in a spin glass to minimize energy;
the conventional bin-packing problem of computer science, and a model of
human agents connected in a small-world network who have to synchronize
their purchase decisions.

Here we explore the use of these COIN techniques for a new problem
recently proposed by Challet and Johnson [6]. This problem is an abstraction
of a problem expected to loom large in nanotechnology: given a collection of
faulty devices, how to choose the subset of those devices that, when combined
with each other, gives optimal performance. The canonical version of this
problem arises when the devices are all observational devices producing a
single real number whose value is a (fixed) distortion of the true value that
would be read by a perfect device. The distortions are assigned to each device
by random sampling of a fixed Gaussian distribution. The problem is to
choose the subset of a fixed collection of such devices to have the average
(over the members of the subset) distortion as close to zero as possible.

Formally, the problem is to minimize

N
| Ej:l n;a;|

N
Zk:1 "

where n; € {0,1} is whether device j is or is not selected, and there are N
devices in the collection, having associated distortions {a;}. We identify e
with the world utility, G. There are N individual agents, each setting one of
the n;. The goal is to give those agents private utilities so that, as they learn
to maximize their private utilities, the maximizer of G is found.

€ ’

3.3 Experiment details

Since we wished to concentrate on the effects of the utilities rather than on
the RL algorithms that use them, we used (very) simple RL algorithms.® We
would expect that even marginally more sophisticated RL algorithms would
give better performance.

In the algorithm used in this study, each player had a 2-dimensional
vector giving its estimates of the utility it would receive for taking each
possible move. At the beginning of each week, each n picked whether to set
its action n, to one or zero, using a Boltzmann distribution over the two
components of n’s estimated utilities vector. For simplicity, given how short
our runs were, temperature did not decay in time. However to reflect the fact
that each player operated in a non-stationary environment, utility estimates
were formed using exponentially aged data: for any time step t, the utility

9 Indeed, to use algorithms any simpler than the one we used, algorithms so
patently deficient that they have never even been considered in the RL com-
munity — like the algorithms used in much of the bar problem literature —
would seriously interfere with our ability to interpret our experiments.

Beyond Mechanism Design 13

estimate 7 uses for setting either of the two actions n, was a weighted average
of all the utility values it had received at previous times ¢’ that it chose
that action, with the weights in the average given by an exponential of the
values t — t'. To form the players’ initial training set of action-(utility value)
pairs, we had an initial period in which all actions by all players were chosen
uniformly randomly, with no learning. It was after this initial period that the
agents began choosing their actions according to the associated Boltzmann
distributions.

Figures 3 and 4 show the convergence properties of different algorithms
in systems with 100 and 1000 agents, respectively. The results reported are
based on 20 different {a;} configurations, each performed 50 times (i.e., each
point on the figure is the average of 20 x 50 = 1000 runs). G, AU, and
W LU show the performance of agents using reinforcement learners with those
reinforcement signals provided by G (team game), Aristocrat Utility and
Wonderful Life Utility respectively. S shows the performance of greedy search
where new n;’s are generated at each step and selected if the solution is better
than the current best solution. Because the runs are only 200 timesteps long,
algorithms such as simulated annealing do not outperform simple search:
there is simply no time for an annealing schedule.

0.1

°
S o001 |
[
o
= o
O 0.001 } AU —=— *’ L
WLU
G o
S =
0.0001 | ‘ ‘ ‘
0 - o0 150 200

time
Fig. 3. Faulty Devices Choice Problem, N=100.

For all learning algorithms, the first 20 time steps constitute the “initial
training set gathering” phase where each agent takes random actions and
stores the resulting utility values (hence all learning algorithms perform the
same during that time). Starting at ¢ = 20, with each consecutive timestep
a fixed fraction of the agents still choosing their actions randomly switch to

